a2 United States Patent

Kragh

US009246850B2

(10) Patent No.: US 9,246,850 B2

(54)

(735)
(73)
")

@
(22)
(86)

87

(65)

(60)

(1)

(52)

(58)

(56)

APPARATUS AND METHOD FOR
RECEIVING AND FORWARDING DATA

Inventor: Seren Kragh, Valby (DK)
Assignee: Napatech A/S, Soberg (DK)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 104 days.

Appl. No.: 13/976,823
PCT Filed:  Dec. 27,2011
PCT No.: PCT/EP2011/074096

§371 (),
(2), (4) Date:  Jun. 27,2013

PCT Pub. No.: 'W02012/093056
PCT Pub. Date: Jul. 12, 2012
Prior Publication Data
US 2013/0279509 A1l Oct. 24, 2013
Related U.S. Application Data

Provisional application No. 61/429,663, filed on Jan.
4,2011.

Int. Cl1.

HO4L 12/861 (2013.01)

HO4L 12/54 (2013.01)

HO4L 12/801 (2013.01)

HO4L 12/70 (2013.01)

HO4L 12/863 (2013.01)

U.S. CL

CPC ........... HO04L 49/90 (2013.01); HO4L 12/5693

(2013.01); HO4L 47/10 (2013.01); HO4L
47/6205 (2013.01); HO4L 47/6255 (2013.01);
HO4L 2012/5683 (2013.01)
Field of Classification Search
None
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

3,979,733 A * 9/1976 Fraser ......cccocoeiinine 710/316

(45) Date of Patent: Jan. 26, 2016
5,337,308 A 8/1994 Fan
5,870,396 A * 2/1999 Abu-Amara ....... HO04B 7/18582
370/413
6,072,772 A * 6/2000 Charny et al. ................. 370/229
6,088,734 A * 7/2000 Marinetal. ... ... 709/232
6,091,709 A * 7/2000 Harrison et al. .... .. 370/235
6,389,031 Bl 5/2002 Chao et al.
6,459,708 B1* 10/2002 COX ...ocevvervennenn. HO04L 12/5692
370/463
6,570,945 Bl 5/2003 Ono et al.
6,647,017 Bl 11/2003 Heiman
2003/0112815 AL*  6/2003 Lee .cccoovvvvereniniieienns 370/412
2004/0128401 Al* 7/2004 Fallonetal. ........cccc.... 709/250
2004/0213265 Al* 10/2004 Oueslati et al. . . 370/395.42
2005/0281277 Al* 12/2005 Killian ........cccee..... HO04L 45/22
370/412
2006/0039393 Al* 2/2006 Firoiu .............. HO04L 12/5693
370/412
2007/0177599 Al* 8/2007 Yazakietal. ........... 370/392
2008/0112423 Al* 5/2008 Christenson .................. 370/412
2009/0097848 Al* 4/2009 Sasak .......cccceeerenns H047 3/14
398/52
2009/0127467 Al* 52009 Frach .......cccceeee. GO1T 1/2985
250/363.03
2009/0181663 Al 7/2009 Hu et al.
2010/0091748 Al* 4/2010 Endoh ............... HO04L 29/06027
370/338
2010/0172357 Al* 7/2010 Poulin ..........c...... HO4L 12/4633
370/395.4
2012/0008573 Al* 1/2012 Shivaetal. .....cccocenn. 370/329

* cited by examiner

Primary Examiner — Mohammad Adham
Assistant Examiner — Vladislav Agureyev
(74) Attorney, Agent, or Firm — McHale & Slavin, P.A.

(57) ABSTRACT

A method and apparatus adapted to prevent Head-Of-Line
blocking by forwarding dummy packets to queues which
have not received data for a predetermined period of time.
This prevention of HOL may be on an input where data is
forwarded to each of a number of FIFOs or an output where
data is de-queued from FIFOs. The dummy packets may be
provided with a time stamp derived from a recently queued or
de-queued packet.

14 Claims, 1 Drawing Sheet

10

/

IR

52| |54| |56
5 38 D
32| (34| |38 118
2 v ¥ 4 4 4 I

!

‘ 20

T



U.S. Patent Jan. 26, 2016 US 9,246,850 B2

10

-
N
-
N
-
(o)}

|

<—>|
<—>|
<—>|



US 9,246,850 B2

1

APPARATUS AND METHOD FOR
RECEIVING AND FORWARDING DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a §371 national stage entry of Interna-
tional Application No. PCT/EP2011/074096, filed Dec. 27,
2011, which claims priority to U.S. Provisional Patent Appli-
cation No. U.S. 61/429,663 filed Jan. 4, 2011, the entire
contents of which are incorporated herein by reference.

The present invention relates to an apparatus and method
for receiving and forwarding data an in particular to a manner
of time ordering data packets received from multiple data
sources.

Time ordering may be seen in e.g. U.S. Pat. No. 6,647,017
and U.S. Pat. No. 5,337,308.

A first aspect of the invention relates to a system for for-
warding data, the system comprising:

receiving means for receiving a plurality of data packets

and providing a time stamp for each received data
packet,

aplurality of FIFO input queues each having an output end

or output storage position,

forwarding means adapted to represent each received data

packet in an input queue,

means for de-queuing data packets from the input queues,

the de-queuing means being adapted to de-queue a
packet being represented at the output end/storage posi-
tion of an input queue and having the lowest time stamp
of all packets at the output ends/storage positions of all
input queues, the de-queuing means being adapted to
only de-queue a packet when each input queue has one
or more packets,
the system further comprising generating means for transmit-
ting a dummy packet with a time stamp to an input queue,
when no data packet has been forwarded to the pertaining
input queue for a predetermined period of time.

In the present context, the system may be monolithic and
positioned within a single housing, made of multiple separate
circuits/elements or even made of individual circuits or net-
work units scattered over a given area and connected (via
wires or wirelessly) to each other via one or more networks,
such as or including the WWW, so as to be able to exchange
data. This exchange may be under any data transfer protocol,
such as TCP, Ethernet, Bluetooth or the like, and using any
type of data transfer, wired or wireless. Naturally, the indi-
vidual means of the system may each be formed by one or
more processors, such as FPGAs, ASICs or the like, or a
single such processor may form multiple of the means and
perform multiple of the steps.

The functionality of the system need not merely be the
forwarding of data. Additional processing may, as will be
described further below, be performed, such as the analysis of
the data packets.

In the present context, the data may be one or more data
packets. Data packets may be ordered or grouped into
streams, and the data may include one or more such streams.

A data packet may be any type of a data unit to be trans-
mitted on or transported by a network, data cable, data bus,
trunk, or the like. Normally, a data unit conforms to one or
more data standards, such as the Ethernet standard being an
umbrella under which a number of different standards or data
packet types exist, such as UDP and TCP data packets. A data
packetusually has a number of different information items or
types, such as address data, payload or the like, which are
each positioned at well defined or known positions within the

15

25

30

40

45

50

55

2

data packet. Such positions and types will typically differ
from data packet type to data packet type, but usually, the data
packet type, and thus the positions of individual contents
thereof, may be determined from the actual data packet,
where after the individual data items, such as address data
and/or payload, may be derived, altered, and/or used in the
analysis. The type or standard may be derived directly from
the data packet, such as when a particular data item of the
packet identifies the type/standard, or may be derived from
data derived from the data packet, such as on the basis of
recognition of types and positions of data items of the data
packet and subsequently determination of type(s) or
standard(s) of data packet in which such data may be found at
such position(s).

Data packets as received may be pre-ordered in a multiple
of manners and for a number of reasons. Usually, data
exchange between computers is a file transfer, TCP transfer,
VoIP or the like, where the order of the individual packets is
important. Usually, such transfers are called streams.

A stream of data packets normally is a sequence of data
packets transmitted from a single transmitter to one or more
receivers. These data packets relate to e.g. a single file or the
like transmitted in smaller portions, being the payload of the
packets. The transmitter and receiver, or any intermediate
network elements, will usually then have addresses also rep-
resented in the packet. In addition, other stream identifying
information may be present in the data packet, depending on
the individual data packet standard.

Thus, a stream may be identified on the basis of e.g. the
addresses and/or the stream identifying information,
whereby, if used consistently, the same information may be
derived, and any subsequent process may identify the stream
merely from the information. In another situation, data pack-
ets may be provided with information therein determining the
order thereof, such as a sequence number or a time stamp.
Thus, this information may be used for ordering the packets.

The receiving means may actually receive and/or store the
data or data packet. Alternatively, the data packet may be
received or stored at another position or in an apparatus with
which the receiving/storing apparatus communicates,
whereby the data of the data packet is received and then
accessed remotely by reading the data while being stored in
the other apparatus. The latter will usually provide a slower
processing, as the data packet is accessed remotely.

The receiving means usually will be a type of networking
element adapted to receive data packets from a network.
Thus, this means may have a PHY, a MAC or the like, if
Ethernet data packets are to be received. A large number of
data protocols are known, but the skilled person will know
what receiving means are useful in relation to which proto-
cols. The receiving means may store the data packets or feed
these directly there through for further processing/storing/
transport. Most often, a buffer is provided to take into account
delays, but this is not a requirement.

The receiving means also provides a time stamp for each
data packet. Then, the receiving means is adapted to deter-
mine a point in time or receipt/access of each data packet and
provide corresponding information. In general, any represen-
tation of time may be used, such as a standard representation
of a time; hour/minute/second. Alternatively, time may be
represented in a simpler manner by a number. Naturally, this
number may be wrapped around if desired.

As time naturally will change, the time or number is
altered, such as incremented/decremented, preferably at equi-
distant points in time. The passing of the time in a local clock
of the individual determining means may be controlled by a
periodic signal, which is used for incrementing/decrementing



US 9,246,850 B2

3

the time/number. This periodic signal may be that derived by
the receiving means or may be received thereby from an
external unit. One clock may be used for all receiving means,
if more than one is used, or the receiving means may each
have a clock, where the clocks then are synchronized.

The time stamp may be provided together with the data
packet but preferably is provided therein by adding time
stamp data to the data packet. Then, any later analysis of the
data packet may be performed on the basis of the data packet
itself.

According to the invention, a plurality of FIFO input
queues are provided. In this context, a First In First Out queue
represents e.g. a number of data items/packets having an
order. The oldest item/packet being the next to be read out,
and new items/packets being added after the latest received
item/packet/identifier.

A FIFO may be implemented in a storage having a number
of storage positions along a linear order from an input end to
an output end, where the packets move from the input end
toward the output end and are output from the output end.
Usually, a storage has separately addressable elements, and a
number of such elements may form a queue. Naturally, the
storing unit may be a monolithic storing unit or one composed
by a number of storing elements separated in space. Usual
storing technologies are based on hard drives, floppy discs,
RAM, ROM, PROM, EPROM, EEPROM, Flash, memory
cards, CD-ROM, DVD, memory cards, or the like. Naturally,
the FIFO may be implemented in e.g. a circular storage,
where data/items are not moved but pointers are moved point-
ing to the input end and the output end.

The queue may hold the actual data packets, or parts
thereof, or may be virtual in the sense that only identifiers of
the data packets are held in the queue, where the actual data
packets are stored elsewhere. If the forwarding means are
adapted to forward the data packets, only part of the data
packet need be forwarded, as it may save space, if part thereof
is not needed and can be discarded. If the data packet is not
desired output again, for example, addressing information
therein may be deleted in order to not take up space.

This storing/representing may comprise the forwarding
means deriving or receiving an address of a storage or the
queue in which to store the data. As mentioned, the queue or
all queues may be implemented in a storage as e.g. circular
buffers, whereby the adding of data to the end of a queue will
be adding the data at an address at the end pointer of that
queue. This address may be derived by the forwarding means
itself or may be received, such as upon request, from a sched-
uler, an arbiter or other address generating element.

Preferably, the positions of data, such as any pointers used
for indicating such data, are maintained also when de-queu-
ing the data, so that updated information is available also to
the forwarding means or means generating addresses thereto.

Irrespective of the implementation, the FIFO operation is
desired. This FIFO has the advantage that data packets/items
added thereto in a desired order, such as in a time order, will
maintain that order and thus be output in that order. Therefore,
the data packets may be added to any type of storage, as long
as they are read out in the order of storing.

If separate storing units are provided, the address will
describe both the identity of the actual storing unit and the
“local address” therein.

In one embodiment, each receiving means, if more than
oneis used, is adapted to only forward identifiers/data packets
to a sub-group of the queues, where different receiving means
forward identifiers/data packets to different sub-groups of the
queues. In the situation where more than one receiving ele-
ment is adapted to forward identifiers/data packets to a queue,

10

20

30

40

45

55

4

it is desired that a scheduler is provided which ensures that the
identifiers/data packets in each queue is forwarded in the
order dictated by their time stamps. Thus, in one embodiment,
these receiving means forward information to the scheduler
relating to the time stamps of packets/identifiers for a shared
queue, and the scheduler will instruct the pertaining receiving
means when the identifier/packet may be represented in that
queue.

The de-queuing of data packets from the input queues may
be an actual removal of the data packets or parts thereof from
the queues. Alternatively, the queue may be virtual in the
sense that the data packets need not be forwarded to and
removed from a particular storage area, but a queue may be
defined by an order of identified data packets without moving
these. The queue thus is virtual, and a data packet may be
deleted/removed/de-queued by removing the identification
thereof from the order of data packets.

In another situation, the queue may be a list, such as a
circular list, of data packets or identifiers thereof, where the
ends of the queue are identified by e.g. pointers. Thus, the
de-queuing may be a shifting of an end pointer from the
de-queued packet/identifier to the next.

Thus, the de-queuing means may be means for actually
reading or deleting the data packet from the queue. Alterna-
tively, the de-queuing means may operate on a representation
of the queue and merely remove the indication of the queue
being in the queue.

The queues being FIFO queues, the data packet removed is
always that data packet in the queue which was received the
earliest.

According to the invention, the de-queuing means is
adapted to de-queue the data packets one at the time. The
de-queuing means only de-queues a data packet, if all queues
hold one or more data packets.

Also, the de-queuing means de-queues that packet which
has the lowest time stamp. In this respect, it is remembered
that only the first or top data packets are looked at. Also, it is
noted that the time stamp may be an integer of an interval of
integers, whereby the time stamp may “wrap around”, so that
the highest integer may, in fact, be seen as being lower than
the lowest integer.

In this manner, it is ensured that a data packet with a higher
time stamp cannot overtake a data packet with a lower time
stamp, if the lower time stamp data packet is to be fed to
another queue but is delayed, so that this queue is empty,
when the latter packet arrives for de-queuing.

It is noted that different strategies may be selected for
selecting a queue for a data packet, such as priority of the data
packets. Therefore, a queue may “legally” be empty for any
period of time, and this should not be allowed to stall the
process.

However, systems of this type may experience what is
known as Head-Of-Line blocking (HOL blocking) in that an
empty queue will make the process stall.

In order to prevent this type of blocking, generating means
are provided which transmits a dummy packet to a queue to
which no packets have been transmitted for a predefined
period of time.

Thus, if a queue is empty and thus stalls the system, this
situation is ended by the generating means transmitting a
dummy packet to that queue, where after the de-queuing
means will act thereon and thus commence with the de-
queuing.

In this respect, the de-queuing means treats the dummy
packets and data packets equally, even though it may, subse-
quent to de-queuing, treat the two types of data packets dif-
ferently.



US 9,246,850 B2

5

In this respect, the adding and de-queuing of a dummy
packet to a queue may be performed as the adding and de-
queuing of data packets to the queues. It is noted, however,
that the only relevant part of the dummy packet may be the
time stamp, whereby a dummy packet may take up very little
space in a queue.

In the present context, a dummy packet need no other
information than the time stamp. Naturally, if the de-queuing
means is adapted to read e.g. address data from the de-queued
packets and act thereon, it may be desired to provide the
dummy packet also with address data. Also, the dummy
packet may be added other data, such as link information or
the like, if the dummy packet when de-queued is fed to other
circuits which may benefit from this data. Usually, the
dummy packet will not be provided with data relating to the
data packets of the queue but may be provided with data, such
as queue length, relating to the queue into which it was
placed.

Preferably, the time stamp of a dummy packet is the actual
point in time of generation of the dummy packet. Alterna-
tively, an earlier point in time, such as the actual point in time
subtracted the predetermined period of time, may be used.
Alternatively, a later point in time may be used. It should,
however, be kept in mind that it is desired that all packets in a
queue are positioned therein in the order of their time stamps.

Naturally, the predetermined period of time may be
selected as desired. A shorter period of time will allow stalls
of'the process to be smaller, but then more dummy packets are
forwarded and more bandwidth thus consumed. A longer
period of time will reduce the used bandwidth but allow the
stalls to take longer. The period of time may be determined in
relation to any maximum processing delay in a receiving
means, so that when this time has elapsed, it is ensured that all
earlier packets are represented in the queues, and the dummy
packet may then be generated.

This de-queuing methodology including the dummy pack-
ets thus may be used for correcting any differences in delay
between the receiving means and the queues or even prior to
the receipt of the data packets. This may be reflected in the
period of time allowed to lapse, before the dummy packet is
generated.

In one embodiment, a single receiving means is used. In
this respect, the dummy packets may be generated by the
receiving means, as it is in control of data packet forwarding
to all input queues.

In a preferred embodiment, however, the receiving means
comprises a plurality of physically separate receiving circuits
each being adapted to receive a plurality of data packets and
provide a time stamp for each received data packet, each
receiving circuit comprising a generating means.

When multiple receiving means are provided, the system
becomes more versatile in that more or less such receiving
means may be provided to adapt the capabilities of the sys-
tem.

However, in this situation, the dummy packets may be
generated by the individual receiving means. Thus, if a
receiving means notices that it has not forwarded a packet to
a given input queue for the predetermined period of time, it
may forward a dummy packet irrespective of whether other
receiving means have forwarded data packets or dummy
packets.

In another embodiment, a scheduler is provided for ensur-
ing that the data packets forwarded to the individual input
queues from multiple receiving means are forwarded in the
correct order. This scheduler may also be used for generating
the dummy packets in that it may monitor all data packet
transfer to all input queues and thus generate a single dummy

10

15

20

25

30

35

40

45

50

55

60

65

6

packet to a starving queue and only when this input queue has
received no data packets from any receiving means during the
predetermined period of time.

Alternatively the scheduler may instruct a receiving means
to generate and forward the dummy packet to the starving
input queue. In this respect, any receiving means may be used,
such as areceiving means that is the least busy of the receiving
means. The “degree of busyness” for the receiving means
may be decided from the number of requests for transfer of
data packets from the receiving means to the queues from the
individual receiving means.

Naturally, if each receiving means forwards data packets to
input queues not receiving data packets from other receiving
means, no scheduler is required as, as in the situation with
only one receiving means, the receiving means may itself
ensure the correct ordering of the packets in the queues and
the generation of dummy packets.

When, however, multiple receiving means are provided
which each is adapted to time stamp received data packets, it
is desired that the time stamps are coordinated. Thus, it is
desired that the receiving means all receive a common clock-
ing signal so that the time stamping is coordinated. Alterna-
tively or in addition, each receiving means may comprise a
local clock where all such clocks are synchronized.

In one embodiment, the de-queuing means are adapted to
discard dummy packets. Thus, the de-quening means will not
output such dummy packets. On the other hand, the de-queu-
ing means may be adapted to output the de-queued data
packets which now will be output in the order of their time
stamps irrespective of which input queue they were fed to.

These output data packets may be output for any type of
use, such an analysis thereof. The data packets are now
ordered according to their time of arrival, whereby the analy-
sis of e.g. streams of data packets is facilitated.

After this analysis, or simply after de-queuing, the data
packets may be output from the system in any desired manner.
It may, for example, be desired output to the same data trans-
mission link(s)/cable(s) or even port as the packets were
received from and in the same time order. In this situation, the
present system may be transparent or invisible on that com-
munication link.

In one embodiment, the system further comprises a plural-
ity of FIFO output queues each having an output end or
storage position, the de-queuing means being adapted to for-
ward data packets de-queued from the input queues to one or
more of the output queues in the order of de-queuing from the
input queues.

These output queues may be positioned in a common stor-
age, such as a storage also implementing the input queues
and/or may be implemented in the receiving means. A system
may be used where small queues are present in the receiving
means from where the data packets are de-queued, and where
larger queues are present in another storage from where the
queues in the receiving means are fed.

Naturally, not all received or de-queued data packets need
be forwarded to the output queues. In some situations, packet
dropping may be desired and allowable, if congestion is expe-
rienced. Packet dropping is a usual activity, and this may not
even affect the transparency/invisibility of the present sys-
tem.

The data packets forwarded to the output queues are for-
warded thereto in the order of de-queuing from the input
queues and thus in the order of their time stamps. Therefore,
the de-queuing and any analysis or the like performed upon
the de-queued data packets will not re-order the data packets.



US 9,246,850 B2

7

Thus, in this manner, as is the case with the input queues, the
data packets in the individual output queues are ordered by
their time stamp values.

In one embodiment, the de-queuing means de-queues
packets from an input queue only to output queues not receiv-
ing packets from other input queues. In that situation, dummy
packets from that input queue may be copied to all such
output queues.

In another embodiment, the de-queuing means is adapted
to derive a time stamp from a de-queued data packet, generate
a dummy packet, provide the dummy packet with the derived
time stamp and forward the dummy packet to an output queue
to which no de-queued data packets have been forwarded for
at least a predetermined period of time.

This is advantageous as the de-queuing means may not
itself be able to generate a reliable time stamp, whereby it is
much easier to copy one from a recently de-queued package
(data or dummy), such as a package forwarded to an output
queue immediately before or to be forwarded immediately
after the newly generated dummy packet. Naturally, the time
stamp of the newly generated dummy packet may be that of
any 2, 4, 6, 8, 10 or 50 newly de-queued packets.

In a particular situation, pairs of queues exist comprising
one input queue and an output queue, the queues of the pairs
being non-overlapping, where the de-queuing means is
adapted to feed data packets de-queued from the input queue
of'a pair to the output queue of the pair, the de-queuing means
additionally being adapted to feed any dummy packets from
the input queue of the pair to the output queue of the pair.

That pairs are non-overlapping means that each input
queue and each output queue is a member of only one pair, if
any.

Then, data packets and dummy packets de-queued from the
input queue of a pair may be fed to the corresponding output
queue of the pair. Again, packet dropping may be allowed, so
there need not be a total correspondence between the packets
in the input queue and in the output queue, but the ordering of
the packets in the output queue of the pair will be the same as
the ordering in the input queue of the pair.

In general, the use of dummy packets in output queues is
interesting when the system further comprises an output de-
queuing means for de-queuing data packets and dummy
packets from the output queues, the output de-queuing means
being adapted to de-queue a packet being at the output end/
storage position of an output queue and having the lowest
time stamp of all packets at the output ends/storage positions
of all output queues, the output de-queuing means being
adapted to only de-queue a packet when each output queue
has one or more packets.

Thus, when the contents of the output queues (apart from
any dropped packets) can be identical to those of the input
queues, and when the de-queuing takes place in the same
manner, the same HOL blocking may be seen. This, however,
is automatically prevented by the dummy packets also being
fed to the output queues and actually to the output queues
which would otherwise be starving.

In this situation, the de-queuing of the output queues may
differ in that de de-queuing may be performed within sub-
groups of the output queues, where the de-queuing of one
sub-group may be independent of that of another sub-group.
This may be the situation when different sub-groups of output
queues are de-queued to different outputs, such as different
receiving means.

Naturally, dummy packets may, as in relation to the input
queues, be generated for any output queues irrespective of
what strategy/plan is used for feeding the de-queued packets
to the output queues and whether these are actually fed thereto

10

15

20

25

30

35

40

45

50

55

60

8

in time order. Then, any processor de-queuing and/or analyz-
ing the de-queued data packets may generate the dummy
packets by e.g. copying the time stamp of another packet as
described above. Alternatively, a separate unit or element may
be used for monitoring the output queues and generate
dummy packets if required.

A second aspect of the invention relates to a method of
receiving and forwarding data, the method comprising:

receiving a plurality of data packets and providing a time

stamp for each individual received data packet,

representing each received data packet in one or more of a

plurality of FIFO input queues each having an output
end or storage position,

de-queuing a data packet from the input queues, the de-

queuing comprising de-queuing a packet having the
lowest time stamp of all packets at the output ends/
storage positions of all input queues, the de-queuing
only being performed when each input queue has one or
more packets,
the method further comprising transmitting a dummy packet
with a time stamp to an input queue, when no data packet has
been forwarded to the pertaining input queue for a predeter-
mined period of time.

Usually, the receiving step will comprise receiving the data
packets from a data cable or link. This data transport may be
performed using any desired protocol and any desired tech-
nology, such as wireless (Bluetooth, WLAN, WAN;, infrared
communication or the like) or wired (Ethernet for example) or
the like.

The time stamping may be on the basis of a local clock or
a received clocking signal.

The representing step may comprise actually forwarding
the data packet or part thereof to the queue. Alternatively, a
virtual queue may be used merely receiving an identifier of
the packet which then may be stored elsewhere.

Similarly, the de-queuing step may comprise actually read-
ing/removing the data packet from the queue in the situation
where the queue actually holds the data packet and where the
data packet is required elsewhere after de-queuing. Alterna-
tively, the de-queuing of the packet may be virtual in the
removal of an identifier of the packet in the queue.

The queue may be implemented in e.g. a circular list where
the de-queuing of the data packet or its identifier may simply
be the altering of a position, such as a pointer, denoting a limit
between taken-up positions in the queue and free positions so
that this data packet or identifier will subsequently be over-
written with other data.

The de-queuing step may comprise merely reading and
then discarding the data packets. Alternatively, the de-queued
data packets may be output by or further analyzed by the
de-queuing means which may then be any type of processor,
server, cluster of processors or the like. Then, the de-queuing
means may have its own storage etc. in order to be able to
perform the tasks required.

The transmitting step may comprise a central transmission,
whereby only a single generating means may be required, or
multiple generating means may be provided. In one situation,
a generating means is provided in each receiving means. In
that situation, and when multiple receiving means are adapted
to transmit received data packets to the same queues, multiple
dummy packets may be forwarded to a queue, if it has not
received packets from multiple receiving means during the
predefined period of time. This, however, need not be a prob-
lem in that the de-queuing means may discard the dummy
packets and in that the absence of data packets to that queue
will automatically provide bandwidth so that the transmission
of the dummy packets is not a limiting factor.



US 9,246,850 B2

9

In one embodiment, the receiving step comprises a plural-
ity of physically separate receiving circuits each receiving a
plurality of data packets and providing a time stamp for/to
each individual received data packet. Then, each receiving
circuit may be able to perform the step of transmitting the
dummy packet, either on the basis of its own determination of
the fact that an input queue has not received a data packet for
a predetermined period of time or as instructed by e.g. a
scheduler having performed that determination. This sched-
uler may also be used for ensuring that data packets from
multiple receiving means to the same input queue are for-
warded in the correct order. Also, the separate receiving cir-
cuits may each have a clock. In that situation, it is desired that
the clocks are synchronized. Synchronization of such clocks
is known to the skilled person.

In this respect, it may be desired that each receiving means
is adapted to transmit dummy packets to at least the queue(s)
to which the receiving means is adapted to feed identifiers/
data packets.

In one embodiment, the de-queuing step comprises dis-
carding dummy packets. In this manner, bandwidth is saved at
the de-queuing or any later forwarding or analysis, if these
dummy packets or any information therein is not required
later on.

In one embodiment, the de-queuing step comprises for-
warding data packets de-queued from the input queues to one
or more of a plurality of FIFO output queues, each having an
output end or storage position, in the order of de-queuing
from the input queues.

In this situation, the de-queuing means may generate
dummy packets to be forwarded to output queues not having
received packets for a predetermined period of time. In this
situation, the de-queuing step could comprise deriving a time
stamp from a de-queued data packet, generating a dummy
packet, providing the dummy packet with the derived time
stamp and forwarding the dummy packet to an output queue
to which no de-queued data packets have been forwarded for
at least a predetermined period of time.

In that embodiment, it may also be preferred that pairs of
queues exist comprising one input queue and an output queue,
the queues of the pairs being non-overlapping, where the
de-queuing step comprises feeding data packets de-queued
from the input queue of a pair to the output queue of the pair,
the de-queuing step additionally comprises feeding any
dummy packets from the input queue of the pair to the output
queue of the pair.

Itis noted that in the situation where packets from one input
queue are de-queued to output queues not receiving packets
from other input queues, a dummy packet from the input
queue may be copied to all such output queues.

Then, the method may further comprise the step of de-
queuing data packets and dummy packets from the output
queues by de-queuing a packet being at the output end/storage
position of an output queue and having the lowest time stamp
of all packets at the output ends/storage positions of all output
queues, the de-queuing of data packets from the output
queues only being performed when each output queue has
one or more packets.

In the following, preferred embodiments of the invention
will be described with reference to the drawing, wherein

FIG. 1 illustrates a preferred embodiment according to the
invention.

In FIG. 1, a system 10 is illustrated in which a number of
analyzers 12, 14 and 16 receive data packets from any source
or sources, such as a network, the WWW or the like.

The analyzers 12/14/16 time stamp these data packets and
forward each data packet, or at least part thereof, viaa bus 18,

15

40

45

50

10

to one or more of the queues 32/34/36. The packet (or part
thereof) is stored in the queue with its time stamp.

The time stamp may be provided to the data packet or
transmitted together with—Dbut not in—the data packet.

It is noted that the same functionality may be obtained
when forwarding an identifier of the data packet with time
stamp to the queue and thus not actually transferring/copying
the data packet.

From the queues 32/34/36, the data packets (or parts
thereof) 38 are de-queued by a processor 40 which may
perform any desired analysis of these packets (or parts
thereof), and output these if desired.

The time stamping of the data packets in the analyzers
12/14/16 is performed using synchronized, individual clocks
(notillustrated) in the analyzers. Alternatively, a global clock-
ing signal may be forwarded to the analyzers 12/14/16, or a
combination may be preferred.

In the present embodiment, it is desired that the processor
40 receives/de-queues the data packets 38 in the same time
order as they were received and time stamped.

In order to ensure this, the processor 40 will de-queue that
packet from the queues 32/34/36 which has the lowest time
stamp, but it will only de-queue a packet, when at least one
packet is present in each queue 32/34/36.

Therefore, each analyzer 12/14/16 will keep track of, for
each queue 32/34/36, when it forwarded a data packet (or part
thereof) to that queue 32/34/36, and if a predetermined period
of time has been exceeded, a dummy packet D will be for-
warded to that queue with a time stamp corresponding to the
point in time of transmission thereof.

A scheduler 20 may be used for ensuring the ordering of the
packets 38/D in the individual queues 32/34/36, if an analyzer
12/14/16 informs the scheduler 20 to which queues 32/34/36
it wishes to transmit packets, and the time stamps thereof.
After this, the scheduler 20 is able to arbitrate and order the
packets 38/D by instructing the analyzers 12/14/16 to feed the
packets 38/D to the queues 32/34/36 in the correct order.

In a simple embodiment, each analyzer 12/14/16 transmits
data packets only to one or some of the queues 32/34/36, and
different analyzers 12/14/16 transmit data packets to different
queues. Then, the scheduler 20 may not be needed, and the
bus 18 may be replaced by individual data connections from
the analyzers 12/14/16 to the pertaining queues 32/34/36.

Using the dummy packets, it is ensured that any head-of-
line blocking of the system only persists for the predeter-
mined period of time, where after all packets in the queues
(which will have an earlier time stamp) can be de-queued. If
a queue 32/34/36 has several dummy packets D, such as from
multiple analyzers 12/14/16, this is not problematic, as these
packets D will be de-queued in the correct order, will prevent
head-of-line blocking and will not take up excess bandwidth
on the links between the queues 32/34/36 and on the one side
the analyzers 12/14/16 and on the other side the processor 40
in that these links preferably should be able to carry the full
bandwidth possible and in that the presence of the dummy
packets D is a sign of the number of packets forwarded to
these queues 32/34/36 being low.

Thus, the use of dummy packets in this type of de-queuing
will help take into account any differences in delays from the
analyzers 12/14/16 to the queues 32/34/36, such as over the
bus 18. Also, delays in the analyzers 12/14/16 (after time
stamping) is taken into account.

An alternative solution may be one wherein the scheduler
20 itself generates and forwards dummy packets to the starv-
ing input queues 32/34/36 or instructs an analyzer 12/14/16,
such as a non-busy analyzer, to do so.



US 9,246,850 B2

11

Naturally, the processor 40 may discard the dummy pack-
ets D in order to not spend bandwidth on the processing of
these, but it may be desired to actually feed these dummy
packets D through the processor 40, when it is desired to also
output the de-queued data packets 38 from the processor 40.

When the processor 40 de-queues the data packets 38 in the
order of arrival (time stamp), it may output the data packets in
the same order to one or more output queues 52/54/56.

These output queues 52/54/56 may be positioned in a com-
mon storage, such as the same storage as the input queues
32/34/36 and/or they may be provided in the analyzers 12/14/
16. In one embodiment, small queues are provided in the
analyzers and larger ones in another storage from where data
packets are fed to those in the analyzers from where the
de-queuing takes place before outputting the data packets
from the analyzers. Then, the de-queuing within one analyzer
is independent of that of another analyzer.

As is the situation at the input queues 32/34/36, dedicated
links may be used between the processor 40 and the queues
52/54/56, or itis possible to use a bus corresponding to the bus
18 using a scheduler similar to the scheduler 20, or via the bus
18 using the scheduler 20.

Now, the data may be de-queued from the output buffers in
the same manner, i.e. that a packet is only de-queued, if no
queues are empty, and the data packet with the lowest time
stamp is de-queued. At this level, the dummy packets D are
usually discarded.

In one situation, a correspondence exists between pairs of
an input bus 32/34/36 and an output bus 52/54/56, so that
packets 38/D received from the input bus of a pair are output
to the output bus of the pair. In that situation, the dummy
packets D may be re-used, i.e. fed through the processor to the
output ports, in that the queue filling pattern at the input ports
will be duplicated to the output ports.

In aparticular embodiment, it is desired that the data output
of'an analyzer 12/14/16 is identical to that received, meaning
that the order of data packets output is identical to the order of
the data packets output. Naturally, data packets may be
dropped, if a processor or the like becomes too busy, but the
packets output are ordered in the order of receipt.

This embodiment may be for uses where the system is to be
“transparent”, i.e. that the computers outputting/receiving the
packets are not able to ascertain that the packets are inter-
cepted and analyzed.

In a more generic embodiment, there is no correspondence
between the input and output queues, so that the processor 40
may decide to forward an analyzed data packet 38 to any
output queue 52/54/56. In this embodiment, the processor 40
preferably discards the dummy packets D de-queued from the
input queues 32/34/36 but generates new dummy packets D
for use in the output queues 52/54/56 in the same manner, i.e.
that if the processor 40 has not forwarded data packets 38 to
a queue for a predetermined period of time, a dummy packet
D is fed to that queue in order to prevent head-of-line block-
ing. This new dummy packet may have a time stamp copied
from another recently de-queued or processed packet.

Then, the packets 38/D of the output queues 52/54/56 may
be de-queued in time order, the dummy packets D may be
discarded, and the data packets 38 may be output in any
manner desired.

In the special case where packets from an input queue are
forwarded to output queues not receiving packets from other
input queues, a dummy packet from the input queue may be
copied to all such output queues.

Naturally, the individual queues may be embodied in any
suitable manner, and especially in the embodiment where
pairs of an input and an output queue are formed, a single

30

35

40

45

55

60

12

memory may be used to form both queues of a pair. This
memory may be a circular memory holding all data/dummy
packets of the queues, where pointers are used for describing
which packets are in the input queue, which packets are in the
output queue and which storage locations in the circular
memory are empty. Thus, the de-queuing of data packets from
the input queue to the processor 40 may be a transmission of
the data packet to the processor 40, or the processor 40 simply
reading the data packet in the memory. Also, the “feeding” of
data packets from the processor 40 to the output queues
52/54/56 may then be the transmission of instructions to the
memory or controller thereof to simply either move the data
packet within the memory or, even simpler, re-direct a pointer
therein to indicate that the data packet is now part of the
output queue.

Naturally, any number of queues may be used for the—or
each—processor. Such queues may also be prioritized, or
data packets with different priority or contents may be fed to
different queues. Thus, if congestion is seen, it will be pos-
sible to simply drop packets 38 in a lower prioritized queue or
data packets of a type transmitted to a particular queue. This
will not destroy the time ordering while reducing the band-
width requirements and thus dissolving the congestion.

In one embodiment, multiple processors are used which
each have their own input queues (corresponding to 32/34/36)
which may be fed via the bus 18 using the scheduler 20 or may
be fed, if desired, via dedicated links, from the analyzers
12/14/16 or other analyzers (not illustrated). In this situation,
the multiple processors may either discard the analyzed pack-
ets or feed the data packets to the output queues (correspond-
ing to queues 52/54/56) a bus corresponding to the bus 18
using a scheduler similar to the scheduler 20, or via the bus 18
using the scheduler 20. Each processor may output data pack-
ets to queues to which the other processors do not output
packets, or multiple processors may be able to output packets
to the same queue(s).

Naturally, the analyzers 12/14/16 need not analyze the
packets at all. Alternatively, they may perform any desired
analysis and may add information relating to any analysis
performed or a result thereof to the data packets for later use.
Alternatively, the information/results may be forwarded with
the data packet and not therein.

In one situation, the processor 40 may perform an analysis
of'the data packet(s). This analysis may be any desired analy-
sis, such as an analysis of a group of data packets relating to
e.g. the same flow of data. This analysis may be based on any
information relating to a pre-processing performed in the
analyzers 12/14/16 and provided with or in the data packets.

In another situation, the processor has no other function
than merely de-queuing the data packets and thus merely acts
to output the de-queued packets (data packets 38 and dummy
packets D if not discarded) in the time order obtained by the
above method of de-queuing.

It is noted that the present time stamping and time infor-
mation may be based on any desired representation of time.
The time may be a real time received from the outside world
or may be a local time used by the system. The time may be
absolute or relative.

Preferably, the time is relative and represented by an inte-
ger within a predetermined integer range. The integer wraps
around when the maximum value has been reached. This
integer is incremented regularly and with a predetermined
frequency which is selected appropriately in relation to the
maximum frequency of receipt of data packets, which means
the data rate or bandwidth of receipt of data packets and the



US 9,246,850 B2

13

minimum data packet size. It is desired that two packets
cannot be received by the same analyzer 12/14/16 within the
same time slot.

The invention claimed is:

1. A system for forwarding data, the system comprising:

receiving means for receiving a plurality of data packets

and providing a time stamp for each received data
packet,

aplurality of FIFO input queues each having an output end

or output storage position,

forwarding means adapted to represent each received data

packet in an input queue,

means for de-queuing data packets from the input queues,

the de-queuing means being adapted to de-queue a
packet being represented at the output end/storage posi-
tion of an input queue and having the lowest time stamp
of all packets at the output ends/storage positions of all
input queues, the de-queuing means being adapted to
only de-queue a packet when each input queue has one
or more packets,

the system further comprising generating means for trans-

mitting a dummy packet with a time stamp to an input
queue, when no data packet has been forwarded to the
pertaining input queue for a predetermined period of
time.

2. A system according to claim 1, wherein the receiving
means comprises a plurality of physically separate receiving
circuits each being adapted to receive a plurality of data
packets and provide a time stamp for each received data
packet, each receiving circuit comprising a generating means.

3. A system according to claim 1, wherein the de-queuing
means are adapted to discard dummy packets.

4. A system according to claim 1, further comprising a
plurality of FIFO output queues each having an output end or
storage position, the de-queuing means being adapted to for-
ward data packets de-queued from the input queues to one or
more of the output queues in the order of de-queuing from the
input queues.

5. A system according to claim 4, wherein the de-queuing
means is adapted to derive a time stamp from a de-queued
data packet, generate a dummy packet, provide the dummy
packet with the derived time stamp and forward the dummy
packet to an output queue to which no de-queued data packets
have been forwarded for at least a predetermined period of
time.

6. A system according to claim 4, wherein pairs of queues
exist comprising one input queue and an output queue, the
queues of the pairs being non-overlapping, where the de-
queuing means is adapted to feed data packets de-queued
from the input queue of a pair to the output queue of the pair,
the de-queuing means additionally being adapted to feed any
dummy packets from the input queue of the pair to the output
queue of the pair.

7. A system according to claim 6, further comprising an
output de-queuing means for de-queuing data packets and
dummy packets from the output queues, the output de-queu-
ing means being adapted to de-queue a packet being at the
output end/storage position of an output queue and having the

10

15

20

25

30

35

40

45

50

55

14

lowest time stamp of all packets at the output ends/storage
positions of all output queues, the output de-queuing means
being adapted to only de-queue a packet when each output
queue has one or more packets.

8. A method of receiving and forwarding data, the method
comprising:

receiving a plurality of data packets and providing a time

stamp for each individual received data packet,

representing each received data packet in one or more of a

plurality of FIFO input queues each having an output
end or output storage position,

de-queuing a data packet from the input queues, the de-

queuing comprising de-queuing a packet having the
lowest time stamp of all packets at the output ends/
storage positions of all input queues, the de-queuing
only being performed when each input queue has one or
more packets,

the method further comprising transmitting a dummy

packet with atime stamp to an input queue, when no data
packet has been forwarded to the pertaining input queue
for a predetermined period of time.

9. A method according to claim 8, wherein the receiving
step comprises a plurality of physically separate receiving
circuits each receiving a plurality of data packets and provid-
ing a time stamp for/to each individual received data packet,
each receiving circuit being able to perform the step of trans-
mitting the dummy packet.

10. A method according to claim 8, wherein the de-queuing
step comprises discarding dummy packets.

11. A method according to claim 8, wherein the de-queuing
step comprises forwarding data packets de-queued from the
input queues to one or more of a plurality of FIFO output
queues, each having an output end or storage position, in the
order of de-queuing from the input queues.

12. A method according to claim 11, wherein the de-queu-
ing step comprises deriving a time stamp from a de-queued
data packet, generating a dummy packet, providing the
dummy packet with the derived time stamp and forwarding
the dummy packet to an output queue to which no de-queued
data packets have been forwarded for at least a predetermined
period of time.

13. A method according to claim 11, wherein pairs of
queues exist comprising one input queue and an output queue,
the queues of the pairs being non-overlapping, where the
de-queuing step comprises feeding data packets de-queued
from the input queue of a pair to the output queue of the pair,
the de-queuing step additionally comprises feeding any
dummy packets from the input queue of the pair to the output
queue of the pair.

14. A method according to claim 13, further comprising the
step of de-queuing data packets and dummy packets from the
output queues by de-queuing a packet being at the output
end/storage position of an output queue and having the lowest
time stamp of all packets at the output ends/storage positions
of all output queues, the de-queuing of data packets from the
output queues only being performed when each output queue
has one or more packets.

#* #* #* #* #*



